Современная терминология 3D графики

 

Normal Mapping

Нормалмаппинг - это улучшенная разновидность техники бампмаппинга, описанной ранее, расширенная ее версия. Бампмаппинг был разработан Блинном (Blinn) еще в 1978 году, нормали поверхности при этом методе наложения рельефа изменяются на основе информации из карт высот (bump map). В то время как бампмаппинг всего лишь изменяет существующую нормаль для точек поверхности, нормалмаппинг полностью заменяет нормали при помощи выборки их значений из специально подготовленной карты нормалей (normal map). Эти карты обычно являются текстурами с сохраненными в них заранее просчитанными значениями нормалей, представленными в виде компонент цвета RGB (впрочем, есть и специальные форматы для карт нормалей, в том числе со сжатием), в отличие от 8-битных черно-белых карт высот в бампмаппинге.

В общем, как и бампмаппинг, это тоже "дешевый" метод для добавления детализации к моделям сравнительно низкой геометрической сложности, без использования большего количества реальной геометрии, только более продвинутый. Одно из наиболее интересных применений техники - существенное увеличение детализации низкополигональных моделей при помощи карт нормалей, полученных обработкой такой же модели высокой геометрической сложности. Карты нормалей содержат более подробное описание поверхности, по сравнению с бампмаппингом и позволяют представить более сложные формы. Идеи по получению информации из высокодетализированных объектов были озвучены в середине 90-х годов прошлого века, но тогда речь шла об использовании для Displacement Mapping. Позднее, в 1998 году, были представлены идеи о перенесении деталей в виде карт нормалей от высокополигональных моделей в низкополигональные.


Normal Mapping

Карты нормалей предоставляют более эффективный способ для хранения подробных данных о поверхностях, по сравнению с простым использованием большого количества полигонов. Единственное серьезное их ограничение в том, что они не очень хорошо подходят для крупных деталей, ведь нормалмаппинг на самом деле не добавляет полигонов и не изменяет форму объекта, он только создает видимость этого. Это всего лишь симуляция деталей, на основе расчета освещения на пиксельном уровне. На крайних полигонах объекта и больших углах наклона поверхности это очень хорошо заметно. Поэтому наиболее разумный способ применения нормалмаппинга состоит в том, чтобы сделать низкополигональную модель достаточно детализированной для того, чтобы сохранялась основная форма объекта, и использовать карты нормалей для добавления более мелких деталей.

Карты нормалей обычно создаются на основе двух версий модели, низко- и высокополигональной. Низкополигональная модель состоит из минимума геометрии, основных форм объекта, а высокополигональная содержит все необходимое для максимальной детализации. Затем, при помощи специальных утилит они сравниваются друг с другом, разница рассчитывается и сохраняется в текстуре, называемой картой нормалей. При ее создании дополнительно можно использовать и bump map для очень мелких деталей, которые даже в высокополигональной модели не смоделировать (поры кожи, другие мелкие углубления).

Карты нормалей изначально были представлены в виде обычных RGB текстур, где компоненты цвета R, G и B (от 0 до 1) интерпретируются как координаты X, Y и Z. Каждый тексель в карте нормалей представлен как нормаль точки поверхности. Карты нормалей могут быть двух видов: с координатами в model space (общей системе координат) или tangent space (термин на русском - "касательное пространство", локальная система координат треугольника). Чаще применяется второй вариант. Когда карты нормалей представлены в model space, то они должны иметь три компоненты, так как могут быть представлены все направления, а когда в локальной системе координат tangent space, то можно обойтись двумя компонентами, а третью получить в пиксельном шейдере.


Bump Maps - Normal Maps

Современные приложения реального времени до сих пор сильно проигрывают пререндеренной анимации по качеству изображения, это касается, прежде всего, качества освещения и геометрической сложности сцен. Количество вершин и треугольников, рассчитываемых в реальном времени, ограничено. Поэтому очень важны методы, позволяющие снизить количество геометрии. До нормалмаппинга были разработаны несколько таких методов, но низкополигональные модели даже с бампмаппингом получаются заметно хуже более сложных моделей. Нормалмаппинг хоть и имеет несколько недостатков (самый явный - так как модель остается низкополигональной, это легко видно по ее угловатым границам), но итоговое качество рендеринга заметно улучшается, оставляя геометрическую сложность моделей низкой. В последнее время хорошо видно увеличение популярности данной методики и использование ее во всех популярных игровых движках. "Виной" этому - комбинация отличного результирующего качества и одновременное снижение требований к геометрической сложности моделей. Техника нормалмаппинга сейчас применяется почти повсеместно, все новые игры используют ее максимально широко. Вот лишь краткий список известных ПК игр с использованием нормалмаппинга: Far Cry, Doom 3, Half-Life 2, Call of Duty 2, F.E.A.R., Quake 4. Все они выглядят намного лучше, чем игры прошлого, в том числе из-за применения карт нормалей.


Quake 4   UT2007

Есть лишь одно негативное последствие применения этой техники - увеличение объемов текстур. Ведь карта нормалей сильно влияет на то, как будет выглядеть объект, и она должна быть достаточно большого разрешения, поэтому требования к видеопамяти и ее пропускной способности удваиваются (в случае несжатых карт нормалей). Но сейчас уже выпускаются видеокарты с 512 мегабайтами локальной памяти, пропускная способность ее постоянно растет, разработаны методы сжатия специально для карт нормалей, поэтому эти небольшие ограничения не слишком важны, на самом деле. Гораздо больше эффект, который дает нормалмаппинг, позволяя использовать сравнительно низкополигональные модели, снижая требования к памяти для хранения геометрических данных, улучшая производительность и давая весьма достойный визуальный результат.






DVD Russian VJ's Vol 2

russian vj Человек не может жить без музыки. И в то же время музыка становится только началом некой цепочки, к которой тянутся люди в свободные часы и во время самых радостных праздников.

Музыка рождает танец, движение вслед за мелодией, вместе с ритмом, способное надолго придать отличное настроение эмоциональный подъем.

Есть и другое направление – к музыке добавляется изображение, уже чужое движение, за которым человек следит, сопереживая.

подробнее

DVD Russian VJ's vol 1

russian vj  Вы когда-нибудь задумывались о том, что за странные и, в то же время завораживающие, картинки двигаются на экранах в клубе на уютной вечеринке или на многотысячном фестивале, на краю земли?

Откуда берутся эти фрагменты? Почему очень сложно описать словами то, что находится перед глазами всю ночь?

Кто следит за тем, чтобы ваши глаза впитывали музыку с экранов?

подробнее

Яндекс.Метрика Copyright by www.Malbred.com 2005